新闻动态 News
查看更多 >>
-
2025-04-272025年4月27日,望石智慧(StoneWise)宣布,将在2025年美国癌症研究协会(AACR)年会上以壁报的形式,发布其自主研发的SWA1211(靶向HPK1)口服小分子抑制剂项目的最新研究成果。SWA1211已获得中国国家药品监督管理局(NMPA)和美国食品和药物管理局(FDA)批准,拟用于晚期实体瘤治疗。 本届AACR大会将于当地时间2025年4月25日至30日在美国芝加哥举行。 望石智慧将在此次AACR年会上展示的壁报信息如下: Poster Information 01. Topic SWA1211, a next generation HPK1 inhibitor exhibits superior anti tumor efficacy in preclinical studies 02. Location Poster Section 29 03. Session Date and Time April 29, 2025, 2:00 PM ~ 5:00 PM 04. Poster Number 5825 05. Session Title Immunomodulatory Agents and Interventions 联系我们:bd@stonewise.cn 关于AACR 美国癌症研究协会(AACR)年会是全球历史最悠久、规模最大的肿...
-
2025-04-16全球医药研发智能化浪潮下,AI技术正重塑从靶点发现到临床研究的全流程! 百世传媒重磅打造《AI智药:小分子发现与优化全链突破》线上研讨会,百世传媒-百世药学院汇聚腾迈医药、成都先导、圆壹智慧、望石智慧、碳硅智慧、智化科技、沃时科技、亿药科技、北京大学、胜普泽泰等10+家领军企业,打造年度最具实战价值的AI制药盛会!邀请“AI+制药“优质企业专家,带来最前沿的AI制药实战分享! 4月18日,让我们共同开启小分子智能研发新纪元! 会议议程 09:00AI驱动小分子药物发现:从虚拟筛选到智能优化 田川|应用科学部总监 上海腾迈联新生物技术有限公司 09:50 基于分子生成、计算化学与实验化学的苗头化合物发现整合方案 张宏波|副总裁、新药开发技术服务部负责 HitChem 10:30佰仕问问的本地AI模型构建与模型幻觉对抗策略 陈辰|总经理 百世AI 10:50AI驱动的先导化合物发现与优化 李游|测序与生物信息学总监 成都先导药物开发股份有限公司 11:30多目标优...
-
2024-12-252024年12月21日,CMIS 2024第三届中国医药数智峰会在上海万豪虹桥大酒店圆满落幕!北京望石智慧科技有限公司被授予“2024年度医药行业AI智能新药创研先锋奖”,以肯定其以多模态 AI 分子生成大模型为撬点,帮助药物研发企业围绕IP整合数据、认知及工具,建立更快更好的药物研发新范式的努力与成果。望石创始人&CEO周杰龙同时受邀参与本次会议,并就“小分子创新药早期研发的数智化”进行分享,介绍了AI时代下医药行业的变化、望石对于当前小分子药物创新困局的思考、以及通过AI大模型辅助药物研发的可能性。 ✎ 主题演讲分享 CMIS 2024第三届中国医药数智峰会中,望石创始人&CEO周杰龙就“小分子创新药早期研发的数智化”这一话题进行了分享。从小分子创新药现状出发,揭示了行业内卷及创新困局的表象下,隐藏的数据、认知及工具无法很好串联从而无法被直接使用并转化为生产力的问题。接着周总详细介绍了望石针对这些问题提出的解决方案: 针对当前小分子创新困难、同质化内卷严重的...
-
2024-11-152024 年 9 月,望石智慧再次获得北京市科委、中关村管委会“ AI+ 健康协同创新培育项目”大额科技经费支持,课题为“融合电⼦密度的多模态 AI ⼩分⼦药物设计平台研发和应⽤”。此课题拟进一步挖掘电子密度中分子动态信息、溶剂信息等业界缺失的关系到“分子与目标蛋白如何相互影响”的关键信息,同时通过融合多模态迭代现有大模型。望石智慧希望通过该药物设计平台推动药物研发路径从“依赖于分⼦库的筛选已知小分子”升级为“空口袋生成小分子并通过人机交互不断优化筛选分子”的设计路径。 2024 年 10 月 9 日,AlphaFold 被授予诺贝尔化学奖,以表彰其通过创新性的引入已有的氨基酸残基共进化数据以及其对应的 MSA 表征来表⽰蛋⽩分⼦,进⽽推动困扰⼈类科学界 50 年的蛋⽩三维结构预测。与 AlphaFold 解决问题的思路类似,望石智慧在世界范围内首次创造性的把晶体学电子密度的拓扑性质作为蛋白分子和药物分子间/内相互作用的表示方法引入了 AI 模型,近乎完美的获得了一个可以表示物理性质...
-
2024-04-03由广州实验室、美国化学会、美国化学会广东分会、广州国际生物岛集团有限公司主办,广州实验室病原体结构与临床应用创新研究院、广州国际生物岛集团有限公司、深圳理工大学合成生物学院承办的ACS创新药物研究和转化研讨会于2024年4月11日-12日在广州实验室召开,望石智慧副总裁黄博博士作为特邀报告人参会,并做了题为《大分子实验密度在AI辅助药物分子设计方面的应用》的学术报告。 报告综述了望石团队以大分子实验电子密度为数据切入口、以分子生成模型核心、以药物分子设计和筛选为应用场景的技术研发成果。6年来,望石团队深耕药物研发行业所特有的、尚未被充分利用的生物大分子实验电子密度数据,挖掘数据中蕴含的分子间相互作用信息、溶剂分布信息、以及分子的平均构象中所包含的构象动态信息,并且把这些用于分子生成模型的训练过程,相关学术成果发表于Nature,Nature Machine Intelligence,Nature Communications,Communications Chemistry, JCIM (封面),ACS Omega (封面) 等。 在报告中,黄博博士还着重强调了望石团队分子...
-
2024-01-19分子生成是AI助力小分子新药研发的核心技术,理想能力的生成模型可以带来早期研发流程的重塑,并撬动巨大的商业价值。截至目前,业内依然没有达到工业标准使用的模型。 望石从成立起即始终专注于分子生成技术的开发。2024年1月15日,望石的研究团队在期刊《Nature Machine Intelligence》发表了题为《Generation of 3D molecules in pockets via a language model》的研究论文,并随文上线了学术版服务 (https://sw3dmg.stonewise.cn)。这是望石智慧第三代分子生成模型,也是3D分子生成模型的v2.0版本 (Lingo3DMol)。模型在分子生成关键指标——信息不泄漏情况下的已报道活性分子的复现、分子-口袋结合打分,以及分子构象方面均有优异表现。 2020年底,针对ligand-based场景,望石智慧发布了首代以骨架跃迁和衍生为主的2D生成模型(成果 | JCIM: AIScaffold基于深度学习的在线骨架衍生工具),该模型在生成分子的新颖性上有出色表现,帮助多家国内外药企在BIC项目上完成了专利的突破和项目进度的赶超。2022年,望石研究团...
学术进展 Academic Progress
查看更多 >>
-
2023-10-09Mengchen Pu , Kaiyang Cheng, Xiaorong Li , Yucui Xin, Lanying Wei, Sutong Jin, Weisheng Zheng, Gongxin Peng, Qihong Tang, Jielong Zhou, Yingsheng Zhang. Volume 21P5099-51102023 DOI: https://doi.org/10.1016/j.csbj.2023.10.011 Abstract: Synthetic lethal (SL) pairs are pairs of genes whose simultaneous loss-of-function results in cell death, while a damaging mutation of either gene alone does not affect the cell’s survival. This makes SL pairs attractive targets for precision cancer therapies, as targeting the unimpaired gene of the SL pair can selectively kill cancer cells that already harbor the impaired gene. Limited by the difficulty of finding true SL pairs, especially on specific cell types, current computational approaches provide only limited insights because of overlooking the crucial aspects of cellular context dependency and mechanist...
-
2023-08-23Wenzhi Ma, Yuan Le, Xiaoxuan Shi, Qingbo Xu, Yang Xiao, Yueying Dou, Xiaoman Wang, Wenbiao Zhou, Hongbo Zhang, Bo Huang. 22 August 2023. DOI: https://doi.org/10.1038/s42004-023-00984-5 Abstract: The quest for effective virtual screening algorithms is hindered by the scarcity of training data, calling for innovative approaches. This study presents the use of experimental electron density (ED) data for improving active compound enrichment in virtual screening, supported by ED’s ability to reflect the time-averaged behavior of ligands and solvents in the binding pocket. Experimental ED-based grid matching score (ExptGMS) was developed to score compounds by measuring the degree of matching between their binding conformations and a series of multi-resolution experimental ED grids. The efficiency of ExptGMS was validated using both ...
-
2023-07-07Yucui Xin, Yingsheng Zhang 07 June 2023 DOI: https://doi.org/10.3389/fonc.2023.1168143 Abstract: Tumor cells can result from gene mutations and over-expression. Synthetic lethality (SL) offers a desirable setting where cancer cells bearing one mutated gene of an SL gene pair can be specifically targeted by disrupting the function of the other genes, while leaving wide-type normal cells unharmed. Paralogs, a set of homologous genes that have diverged from each other as a consequence of gene duplication, make the concept of SL feasible as the loss of one gene does not affect the cell’s survival. Furthermore, homozygous loss of paralogs in tumor cells is more frequent than singletons, making them ideal SL targets. Although high-throughput CRISPR-Cas9 screenings have uncovered numerous paralog-based SL pairs, the unclear mechanisms of ta...
-
2023-05-30Weisheng Zheng, Mengchen Pu, Xiaorong Li, Zhaolan Du, Sutong Jin, Xingshuai Li, Jielong Zhou, Yingsheng Zhang 30 May 2023 DOI: https://doi.org/10.1038/s41598-023-35842-w Abstract: Metastatic propagation is the leading cause of death for most cancers. Prediction and elucidation of metastatic process is crucial for the treatment of cancer. Even though somatic mutations have been linked to tumorigenesis and metastasis, it is less explored whether metastatic events can be identified through genomic mutational signatures, which are concise descriptions of the mutational processes. Here, we developed MetaWise, a Deep Neural Network (DNN) model, by applying mutational signatures as input features calculated from Whole-Exome Sequencing (WES) data of TCGA and other metastatic cohorts. This model can accurately classify metastatic tumors from pri...
-
2023-05-22Feng Zhou, Shiqiu Yin, Yi Xiao, Zaiyun Lin, Weiqiang Fu, and Yingsheng J. Zhang* May 12, 2023 DOI: https://doi.org/10.1021/acsomega.3c02294 Abstract: Drug design based on kinetic properties is growing in application. Here, we applied retrosynthesis-based pre-trained molecular representation (RPM) in machine learning (ML) to train 501 inhibitors of 55 proteins and successfully predicted the dissociation rate constant (koff) values of 38 inhibitors from an independent dataset for the N-terminal domain of heat shock protein 90α (N-HSP90). Our RPM molecular representation outperforms other pre-trained molecular representations such as GEM, MPG, and general molecular descriptors from RDKit. Furthermore, we optimized the accelerated molecular dynamics to calculate the relative retention time (RT) for the 128 inhibitors of N-HSP90 a...
-
2023-03-22Zaiyun Lin,* Shiqiu Yin, Lei Shi, Wenbiao Zhou, and Yingsheng John Zhang. March 22, 2023. DOI: https://doi.org/10.1021/acs.jcim.2c01302 Abstract: Retrosynthesis prediction, the task of identifying reactant molecules that can be usedto synthesize product molecules, is a fundamental challenge in organic chemistry and related fields.To address this challenge, we propose a novel graph-to-graph transformation model, G2GT. Themodel is built on the standard transformer structure and utilizes graph encoders and decoders.Additionally, we demonstrate the effectiveness of self-training, a data augmentation technique thatutilizes unlabeled molecular data, in improving the performance of the model. To further enhancediversity, we propose a weak ensemble method, inspired by reaction-type labels and ensemblelearning. This method incorporates beam search, nucleus sampling, and t...



