新闻动态 News
查看更多 >>
-
2025-11-192025年11月19日,北京望石智慧科技有限公司宣布与深圳微芯生物()科技股份有限公司(股票代码:688321.SH)正式启动基于 MolVado AI 3D 分子生成与小分子药物设计平台 的合作。根据合作安排,望石智慧将向微芯生物提供一套由分子生成模型、系列AIDD()计算工具和计算底座组成的工程化 AI 解决方案,支持其在小分子药物研发阶段的探索与优化工作。 作为中国原创新药领域的先行者,微芯生物汇聚相关领域具有资深经验的顶尖科学家团队,应用基于AI辅助设计+化学基因组学的整合式技术平台,成功开发出西达本胺(肿瘤)及西格列他钠(2型糖尿病)两款全球首创(First-in-class)且同类最优(Best-in-class)的原创新药,多个适应症在全球上市销售,且在恶性肿瘤、代谢性疾病、自身免疫性疾病、神经退行性疾病等领域布局了多个具有差异化优势和全球竞争力的研发项目。本次合作的启动,是双方共同在数字化研发工具链上的又一次战略性探索。 微芯生物首席科学官潘德思博士表示: “微芯生物始终坚持高质量创新的研发理念,不断探索可以提升药物发现效率的技...
-
2025-11-12望石智慧: 感谢天津市滨海新区科技局、天津国际生物医药联合研究院的精心组织与邀请,以及各位参会同仁的精彩分享与宝贵建议!望石智慧深耕 AI 分子生成领域多年,在模型构建、技术迭代与落地运营方面积累了扎实的实践经验与成熟的方法论。 诚挚欢迎行业同仁与我们建立深度联系,围绕个性化模型定制、创新需求共创等方向深化合作,携手破解研发痛点,共推 AI 赋能生物医药产业的创新发展! 10月30日下午,天津经开区科技创新局联合天津国际生物医药联合研究院,共同举办“人工智能赋能小分子药物研发”交流座谈会。来自北京望石智慧科技有限公司的核心团队与区内12家生物医药创新企业代表齐聚一堂,共绘AI驱动药物研发的新蓝图。 会上,望石智慧团队系统展示了AI分子生成、活性预测及管线研发增速降本等核心技术,分享了与国内外药企合作案例;瀚盟测试、睿创康泰、法尔玛制药、丹娜生物、全和诚生物以及辰欣药业等与会企业围绕数据共享、算法适配、临床转化等痛点展开深入对接交流。 下一步,经开区将聚焦协同创新和科技成果转化,加...
-
2025-11-12关于AI for Life Science,一份重磅报告刚刚出炉! 10月30日,弗若斯特沙利文发布《2025中国AI4LS行业发展蓝皮书》,全景式、深层次地展现了AI for Life Science的发展历程、驱动因素、场景应用与未来趋势。 蓝皮书指出,在经历了经验科学、理论科学、计算科学、数据密集型科学的前四大范式之后,在AI的加持下,当前的科学研究正向第五范式——以AI为核心的智能化科研方向进化。 截至2024年,中国AI4S市场规模已达47亿元,涵盖药物研发、合成生物学、基因测序、材料开发及电池与储能等核心领域,从中长期发展来看,AI4S市场规模有望突破千亿元体量。 其中,生命科学凭借深厚的数据基础、高复杂问题与广阔的应用前景,正逐步成为AI4S最理想的应用场景之一。 蓝皮书指出,不同类型企业围绕平台构建、模型驱动与落地能力展开多元探索,代表性公司通过差异化技术路径和应用模式,正在推动AI从工具向赋能主体的跃迁。 在药物研发场景下,成立于2018年的望石智慧,入选本次蓝皮书的代表性公司。 凭借人工智能药物研发底层...
-
2025-09-249 月 18 日,以 “跃升行业智能化” 为主题的华为全联接大会 2025 在上海盛大启幕,汇聚了华为全球的行业领袖、技术先锋与生态伙伴,共同探讨智能技术赋能产业升级的新路径。北京望石智慧科技有限公司(以下简称“望石智慧”)作为华为生物医药行业战略合作伙伴受邀进行主题分享,带来AI驱动新药研发的前沿探索和实践经验。 小分子药物研发企业正面临 “成本走高、收益收窄” 的行业困境,传统研发模式下 “Me-too” 药物扎堆、研发周期冗长等问题成为制约企业创新发展的关键瓶颈。针对这些痛点,望石智慧创始人、CEO周杰龙以“生成式AI基座大模型打造小分子药物研发新范式”为题,系统阐述了人工智能药物设计(AIDD)如何帮助药物研发企业突破研发困局,实现从“跟跑”到“领跑”的弯道超车。演讲中,周杰龙聚焦望石智慧自主研发的MolVado 多模态 AI 3D 分子生成基座大模型及小分子药物设计平台,通过真实案例,展现了 AI 技术在药物研发中的实战价值。 作为望石智慧技术体...
-
2025-07-161.转发本条推文到朋友圈 2.扫码加好友发送截图 备注“望石智慧” (仅限药企与科研院所) 演讲嘉宾: ZHOU FENG计算化学负责人 新加坡南洋理工大学博士,后先后担任南洋理工大学副研究员和研究员,在国际知名期刊发表高水平论文 38 篇,总引用超 1000 次。研究方向包括自由能微扰和热力学积分原理精确计算药物小分子和靶点的结合自由能;增强采样 MD 结合机器学习计算预测分子以及解离路径,指导药物设计等。计算机辅助的药物设计理论研究在多个药物筛选项目上起到了很大的推动作用,大大加速了实验上寻找理想药物的速度。 演讲题目:融合实验电子密度的多模态AI生成模型辅助小分子药物设计 展商介绍 望石智慧——用科技扩展生命的边界,让每个疾病都有药可医,建立更快、更好的药物研发新范式 本次参展将重点展示的产品/技术: MolVadoTM 多模态 AI 3D 分子生成模型及小分子设计平台。该平台以能够精准生成与靶点口袋结构契合的分子/分子骨架的多模...
-
2025-07-09亮点聚焦 01 AI驱动药物发现全流程的「范式迁移」:从“工具赋能”到“系统重构” 02 「虚拟→真实」的硬核闭环,数据、算法与验证的“铁人三项” 03 圆桌思辨: AI更易实现“me-better”优化?还是能催生“first-in-class”甚至“first-in-human”的原始创新? AI半月谈【第9期】 随着人工智能(AI)技术的迅猛发展,其在药物研发中的应用正逐渐从概念走向实践。AI不仅加速了早期靶点识别和高通量虚拟筛选,还在结构预测、候选药物优化等环节展现出巨大潜力。然而,如何将这些前沿技术转化为具有临床价值的实际成果,仍然是行业面临的重大挑战之一。 在此背景下,2025年7月9日(周三)20:00,《AI半月谈》09期邀请了中科计算技术西部研究院教授,图灵-达尔文实验室副主任,哲源科技联合创始人 赵宇教授,甲骨文生命科学北亚区总经理 周德标,望石智慧创始人兼CEO 周杰龙,德睿智药首席商务官 林剑博士等多位大咖,一起共同探讨AI在药物发现全流程中的最新进展...
学术进展 Academic Progress
查看更多 >>
-
2024-07-11Weiqiang Fu, Yujie Mo, Yi Xiao, Chang Liu, Feng Zhou, Yang Wang, Jielong Zhou*, Yingsheng J. Zhang* June 3, 2024 DOI: https://doi.org/10.1021/acs.jctc.3c01181 Abstract: Exclusively prioritizing the precision of energy prediction frequently proves inadequate in satisfying multifaceted requirements. A heightened focus is warranted on assessing the rationality of potential energy curves predicted by machine learning-based force fields (MLFFs), alongside evaluating the pragmatic utility of these MLFFs. This study introduces SWANI, an optimized neural network potential stemming from the ANI framework. Through the incorporation of supplementary physical constraints, SWANI aligns more cohesively with chemical expectations, yielding rational potential energy profiles. It also exhibits superior predictive precision compared with that of the A...
-
2024-07-05Feng Zhou, Haolin Du, Yang Wang, Weiqiang Fu, Bingchen Zhao, Jielong Zhou*, Yingsheng J. Zhang. June 5, 2024 DOI: https://doi.org/10.1021/acsmedchemlett.4c00047 Abstract: We employ a combination of accelerated molecular dynamics and machine learning to unravel how the dynamic characteristics of CBL-B and C–CBL confer their binding affinity and selectivity for ligands from subtle structural disparities within their binding pockets and dissociation pathways. Our predictive model of dissociation rate constants (koff) demonstrates a moderate correlation between predicted koff and experimental IC50 values, which is consistent with experimental koff and τ-random accelerated molecular dynamics (τRAMD) results. By employing a linear regression of dissociation trajectories, we identified key amino acids in binding pockets and along the dissociati...
-
2024-01-15Wei Feng, Lvwei Wang, Zaiyun Lin, Yanhao Zhu, Han Wang, Jianqiang Dong, Rong Bai, Huting Wang, Jielong Zhou, Wei Peng, Bo Huang & Wenbiao Zhou 15 January 2024 DOI: https://doi.org/10.1038/s42256-023-00775-6 Abstract: Generative models for molecules based on sequential line notation (for example, the simplified molecular-input line-entry system) or graph representation have attracted an increasing interest in the field of structure-based drug design, but they struggle to capture important three-dimensional (3D) spatial interactions and often produce undesirable molecular structures. To address these challenges, we introduce Lingo3DMol, a pocket-based 3D molecule generation method that combines language models and geometric deep learning technology. A new molecular representation, the fragment-based simplified molecular-input lin...
-
2023-12-11Di Wu, Qihao Chen, Zhuoya Yu, Bo Huang, Jun Zhao, Yuhang Wang, Jiawei Su, Feng Zhou, Rui Yan, Na Li, Yan Zhao & Daohua Jian. 11 December 2023 DOI: https://doi.org/10.1038/s41586-023-06926-4 Abstract: Vesicular monoamine transporter 2 (VMAT2) accumulates monoamines in presynaptic vesicles for storage and exocytotic release, and has a vital role in monoaminergic neurotransmission1,2,3. Dysfunction of monoaminergic systems causes many neurological and psychiatric disorders, including Parkinson’s disease, hyperkinetic movement disorders and depression4,5,6. Suppressing VMAT2 with reserpine and tetrabenazine alleviates symptoms of hypertension and Huntington’s disease7,8, respectively. Here we describe cryo-electron microscopy structures of human VMAT2 complexed with serotonin and three clinical drugs at 3.5–2.8 &Ari...
-
2023-12-05Bo Qiang, Yiran Zhou, Yuheng Ding, Ningfeng Liu, Song Song, Liangren Zhang, Bo Huang & Zhenming Liu. 05 December 2023 DOI: https://doi.org/10.1038/s42256-023-00764-9 Abstract: Chemical reactions are the fundamental building blocks of drug design and organic chemistry research. In recent years, there has been a growing need for a large-scale deep-learning framework that can efficiently capture the basic rules of chemical reactions. In this paper, we have proposed a unified framework that addresses both the reaction-representation learning and molecule generation tasks, which allows for a more holistic approach. Inspired by the organic chemistry mechanism, we develop a new pretraining framework that enables us to incorporate inductive biases into the model. Our framework achieves state-of-the-art results in performance of challenging downstream tasks. By poss...
-
2023-11-21Lanying Wei, Yucui Xin,Mengchen Pu,Yingsheng Zhang. 17 November 2023. DOI: https://doi.org/10.26508/lsa.202302253 Abstract: To effectively understand the underlying mechanisms of disease and inform the development of personalized therapies, it is critical to harness the power of differential co-expression (DCE) network analysis. Despite the promise of DCE network analysis in precision medicine, current approaches have a major limitation: they measure an average differential network across multiple samples, which means the specific etiology of individual patients is often overlooked. To address this, we present Cosinet, a DCE-based single-sample network rewiring degree quantification tool. By analyzing two breast cancer datasets, we demonstrate that Cosinet can identify important differences in gene co-expression patterns between individual patients and g...



