新闻动态 News
查看更多 >>
-
2025-09-249 月 18 日,以 “跃升行业智能化” 为主题的华为全联接大会 2025 在上海盛大启幕,汇聚了华为全球的行业领袖、技术先锋与生态伙伴,共同探讨智能技术赋能产业升级的新路径。北京望石智慧科技有限公司(以下简称“望石智慧”)作为华为生物医药行业战略合作伙伴受邀进行主题分享,带来AI驱动新药研发的前沿探索和实践经验。 小分子药物研发企业正面临 “成本走高、收益收窄” 的行业困境,传统研发模式下 “Me-too” 药物扎堆、研发周期冗长等问题成为制约企业创新发展的关键瓶颈。针对这些痛点,望石智慧创始人、CEO周杰龙以“生成式AI基座大模型打造小分子药物研发新范式”为题,系统阐述了人工智能药物设计(AIDD)如何帮助药物研发企业突破研发困局,实现从“跟跑”到“领跑”的弯道超车。演讲中,周杰龙聚焦望石智慧自主研发的MolVado 多模态 AI 3D 分子生成基座大模型及小分子药物设计平台,通过真实案例,展现了 AI 技术在药物研发中的实战价值。 作为望石智慧技术体...
-
2025-07-161.转发本条推文到朋友圈 2.扫码加好友发送截图 备注“望石智慧” (仅限药企与科研院所) 演讲嘉宾: ZHOU FENG计算化学负责人 新加坡南洋理工大学博士,后先后担任南洋理工大学副研究员和研究员,在国际知名期刊发表高水平论文 38 篇,总引用超 1000 次。研究方向包括自由能微扰和热力学积分原理精确计算药物小分子和靶点的结合自由能;增强采样 MD 结合机器学习计算预测分子以及解离路径,指导药物设计等。计算机辅助的药物设计理论研究在多个药物筛选项目上起到了很大的推动作用,大大加速了实验上寻找理想药物的速度。 演讲题目:融合实验电子密度的多模态AI生成模型辅助小分子药物设计 展商介绍 望石智慧——用科技扩展生命的边界,让每个疾病都有药可医,建立更快、更好的药物研发新范式 本次参展将重点展示的产品/技术: MolVadoTM 多模态 AI 3D 分子生成模型及小分子设计平台。该平台以能够精准生成与靶点口袋结构契合的分子/分子骨架的多模...
-
2025-07-09亮点聚焦 01 AI驱动药物发现全流程的「范式迁移」:从“工具赋能”到“系统重构” 02 「虚拟→真实」的硬核闭环,数据、算法与验证的“铁人三项” 03 圆桌思辨: AI更易实现“me-better”优化?还是能催生“first-in-class”甚至“first-in-human”的原始创新? AI半月谈【第9期】 随着人工智能(AI)技术的迅猛发展,其在药物研发中的应用正逐渐从概念走向实践。AI不仅加速了早期靶点识别和高通量虚拟筛选,还在结构预测、候选药物优化等环节展现出巨大潜力。然而,如何将这些前沿技术转化为具有临床价值的实际成果,仍然是行业面临的重大挑战之一。 在此背景下,2025年7月9日(周三)20:00,《AI半月谈》09期邀请了中科计算技术西部研究院教授,图灵-达尔文实验室副主任,哲源科技联合创始人 赵宇教授,甲骨文生命科学北亚区总经理 周德标,望石智慧创始人兼CEO 周杰龙,德睿智药首席商务官 林剑博士等多位大咖,一起共同探讨AI在药物发现全流程中的最新进展...
-
2025-06-182025年6月12日至13日,2025人工智能与生物医药生态大会(AIBC2025) 在上海成功举办。大会汇聚了国内外学术界与企业界的众多知名专家学者,共同探讨人工智能(AI)技术在生物医药领域的前沿进展与应用实践。望石智慧研发副总裁黄博博士受邀出席,并就 “小分子药物的 AI 设计” 议题发表了主题演讲。 在6月13日下午的演讲中,黄博博士以 《融合实验电子密度的多模态 AI 生成模型辅助小分子药物设计》 为题,深入解析了望石智慧团队在该领域的创新思路与技术优势。他指出,药物研发过程中产生的实验电子密度数据蕴含巨大价值但尚未被充分挖掘。望石团队创新性地应用成熟的量化理论分析这些数据,深度提取其中信息。这一方法不仅能在分子生成过程中辅助标注非共价相互作用(NCI),从而更全面地理解类药分子与靶点口袋的相互作用模式,还能有效提升虚拟筛选的效率。 黄博博士在报告中着重强调了分子生成模型评估体系的重要性。针对行业普遍存在的两大痛点——“不类药分子‘刷分’现象” 和 “...
-
2025-06-132025年6月13日,北京望石智慧科技有限公司(以下简称“望石智慧”)宣布,其独立自主研发的造血祖细胞激酶1(HPK1)抑制剂SWA1211片,在上海市东方医院完成首例患者给药,正式启动针对晚期实体瘤的Ⅰ期临床研究。 SWA1211片于2025年3月同步获得中国国家药品监督管理局(NMPA)和美国食品药品监督管理局(FDA)的临床试验许可。本研究由上海市东方医院郭晔教授与复旦大学附属肿瘤医院王红霞教授共同牵头,旨在评价SWA1211片在晚期实体瘤患者中的安全性、耐受性、药代动力学特征及初步疗效。 有充分的证据表明,抑制HPK1的活性可以激动人体的免疫功能,达到治疗肿瘤的目的。SWA1211是由望石智慧公司研发团队基于该靶点的结构特点,并应用了公司自主开发的人工智能模型,快速、高效地设计开发出的一款高活性、高选择性的口服小分子HPK1抑制剂。临床前研究表明SWA1211具有同类最佳(Best-in-class)的潜质,在多个肿瘤动物模型中单药表现出显著的抗肿瘤效果,并且与PD-1抗体类药物联用展现出更强的协同抗肿瘤疗效。通过与已披...
-
2025-05-16近日,国内领先的AI制药平台研发企业北京望石智慧科技有限公司(以下简称“望石智慧”)与中国领先的创新驱动型制药企业齐鲁制药集团有限公司上海研发中心正式达成合作。此次合作将深度融合望石智慧自主研发的多模态AI 3D分子生成模型的核心技术优势,为齐鲁制药量身打造小分子药物设计的AI平台。凭借齐鲁制药在创新药研发领域的深厚经验,双方将携手加速早期药物发现进程,推动新药开发向高效、精准的方向迈进,助力创新药研发的突破与发展。 制药+AI融合,破解药物分子设计难题 药物早期研发的核心挑战之一在于设计具有高活性、高选择性和可成药性的分子结构。传统方法试错成本高,周期长。基于对传统药物研发模式的深刻反思与AI技术的理解,齐鲁制药于2024年中期正式启动了“齐鲁AI大脑平台项目”,推动齐鲁制药“AI化”。 望石智慧自主研发的多模态AI 3D分子生成大模型能够基于蛋白质空口袋或参考分子片段,快速精准生成与靶点口袋契合的结构新颖、构象合理且与口袋亲和力高的分子/分子骨架,突破传统药物...
学术进展 Academic Progress
查看更多 >>
-
2024-07-11Weiqiang Fu, Yujie Mo, Yi Xiao, Chang Liu, Feng Zhou, Yang Wang, Jielong Zhou*, Yingsheng J. Zhang* June 3, 2024 DOI: https://doi.org/10.1021/acs.jctc.3c01181 Abstract: Exclusively prioritizing the precision of energy prediction frequently proves inadequate in satisfying multifaceted requirements. A heightened focus is warranted on assessing the rationality of potential energy curves predicted by machine learning-based force fields (MLFFs), alongside evaluating the pragmatic utility of these MLFFs. This study introduces SWANI, an optimized neural network potential stemming from the ANI framework. Through the incorporation of supplementary physical constraints, SWANI aligns more cohesively with chemical expectations, yielding rational potential energy profiles. It also exhibits superior predictive precision compared with that of the A...
-
2024-07-05Feng Zhou, Haolin Du, Yang Wang, Weiqiang Fu, Bingchen Zhao, Jielong Zhou*, Yingsheng J. Zhang. June 5, 2024 DOI: https://doi.org/10.1021/acsmedchemlett.4c00047 Abstract: We employ a combination of accelerated molecular dynamics and machine learning to unravel how the dynamic characteristics of CBL-B and C–CBL confer their binding affinity and selectivity for ligands from subtle structural disparities within their binding pockets and dissociation pathways. Our predictive model of dissociation rate constants (koff) demonstrates a moderate correlation between predicted koff and experimental IC50 values, which is consistent with experimental koff and τ-random accelerated molecular dynamics (τRAMD) results. By employing a linear regression of dissociation trajectories, we identified key amino acids in binding pockets and along the dissociati...
-
2024-01-15Wei Feng, Lvwei Wang, Zaiyun Lin, Yanhao Zhu, Han Wang, Jianqiang Dong, Rong Bai, Huting Wang, Jielong Zhou, Wei Peng, Bo Huang & Wenbiao Zhou 15 January 2024 DOI: https://doi.org/10.1038/s42256-023-00775-6 Abstract: Generative models for molecules based on sequential line notation (for example, the simplified molecular-input line-entry system) or graph representation have attracted an increasing interest in the field of structure-based drug design, but they struggle to capture important three-dimensional (3D) spatial interactions and often produce undesirable molecular structures. To address these challenges, we introduce Lingo3DMol, a pocket-based 3D molecule generation method that combines language models and geometric deep learning technology. A new molecular representation, the fragment-based simplified molecular-input lin...
-
2023-12-11Di Wu, Qihao Chen, Zhuoya Yu, Bo Huang, Jun Zhao, Yuhang Wang, Jiawei Su, Feng Zhou, Rui Yan, Na Li, Yan Zhao & Daohua Jian. 11 December 2023 DOI: https://doi.org/10.1038/s41586-023-06926-4 Abstract: Vesicular monoamine transporter 2 (VMAT2) accumulates monoamines in presynaptic vesicles for storage and exocytotic release, and has a vital role in monoaminergic neurotransmission1,2,3. Dysfunction of monoaminergic systems causes many neurological and psychiatric disorders, including Parkinson’s disease, hyperkinetic movement disorders and depression4,5,6. Suppressing VMAT2 with reserpine and tetrabenazine alleviates symptoms of hypertension and Huntington’s disease7,8, respectively. Here we describe cryo-electron microscopy structures of human VMAT2 complexed with serotonin and three clinical drugs at 3.5–2.8 &Ari...
-
2023-12-05Bo Qiang, Yiran Zhou, Yuheng Ding, Ningfeng Liu, Song Song, Liangren Zhang, Bo Huang & Zhenming Liu. 05 December 2023 DOI: https://doi.org/10.1038/s42256-023-00764-9 Abstract: Chemical reactions are the fundamental building blocks of drug design and organic chemistry research. In recent years, there has been a growing need for a large-scale deep-learning framework that can efficiently capture the basic rules of chemical reactions. In this paper, we have proposed a unified framework that addresses both the reaction-representation learning and molecule generation tasks, which allows for a more holistic approach. Inspired by the organic chemistry mechanism, we develop a new pretraining framework that enables us to incorporate inductive biases into the model. Our framework achieves state-of-the-art results in performance of challenging downstream tasks. By poss...
-
2023-11-21Lanying Wei, Yucui Xin,Mengchen Pu,Yingsheng Zhang. 17 November 2023. DOI: https://doi.org/10.26508/lsa.202302253 Abstract: To effectively understand the underlying mechanisms of disease and inform the development of personalized therapies, it is critical to harness the power of differential co-expression (DCE) network analysis. Despite the promise of DCE network analysis in precision medicine, current approaches have a major limitation: they measure an average differential network across multiple samples, which means the specific etiology of individual patients is often overlooked. To address this, we present Cosinet, a DCE-based single-sample network rewiring degree quantification tool. By analyzing two breast cancer datasets, we demonstrate that Cosinet can identify important differences in gene co-expression patterns between individual patients and g...



