-
Li, Y., Yuan, T., Huang, B. et al. Nat Commun 14, 1030 (2023). https://doi.org/10.1038/s41467-023-36766-9 Abstract The sodium channel NaV1.6 is widely expressed in neurons of the central and peripheral nervous systems, which plays a critical role in regulating neuronal excitability. Dysfunction of NaV1.6 has been linked to epileptic encephalopathy, intellectual disability and movement disorders. Here we present cryo-EM structures of human NaV1.6/β1/β2 alone and complexed with a guanidinium neurotoxin 4,9-anhydro-tetrodotoxin (4,9-ah-TTX), revealing molecular mechanism of NaV1.6 inhibition by the blocker. The apo-form structure reveals two potential Na+ binding sites within the selectivity filter, suggesting a possible mechanism for Na+ selectivity and conductance. In the 4,9-ah-TTX bound structure, 4,9-ah-TTX bin...
-
Cell. October 04, 2022 DOI:https://doi.org/10.1016/j.cell.2022.09.037 Liming Yan, Yucen Huang, Ji Ge, Zhenyu Liu, Pengchi Lu, Bo Huang, Shan Gao, Junbo Wang, Liping Tan, Sihan Ye, Fengxi Yu, Weiqi Lan, Shiya Xu, Feng Zhou, Lei Shi, Luke W. Guddat, Yan Gao, Zihe Rao, Zhiyong Lou Summary Decoration of cap on viral RNA plays essential roles in SARS-CoV-2 proliferation. Here we report a mechanism for SARS-CoV-2 RNA capping and document structural details at atomic resolution. The NiRAN domain in polymerase catalyzes the covalent link of RNA 5’ end to the first residue of nsp9 (termed as RNAylation), thus being an intermediate to form cap core (GpppA) with GTP catalyzed again by NiRAN. We also reveal that triphosphorylated nucleotide analogue inhibitors can be bonded to nsp9 and fi...
-
Sci Rep. 2022 Sep 6;12(1):15100. doi: 10.1038/s41598-022-19363-6. Lvwei Wang, Rong Bai, Xiaoxuan Shi, Wei Zhang, Yinuo Cui, Xiaoman Wang, Cheng Wang, Haoyu Chang, Yingsheng Zhang, Jielong Zhou, Wei Peng, Wenbiao Zhou & Bo Huang Abstract We report for the first time the use of experimental electron density (ED) as training data for the generation of drug-like three-dimensional molecules based on the structure of a target protein pocket. Similar to a structural biologist building molecules based on their ED, our model functions with two main components: a generative adversarial network (GAN) to generate the ligand ED in the input pocket and an ED interpretation module for molecule generation. The model was tested on three targets: a kinase (hematopoietic progenitor kinase 1), protease (SARS-CoV-2 main protease), and nuclear receptor (vi...
-
Liming Zhao, Mengchen Pu, Huting Wang, Xiangyu Ma, and Yingsheng J. Zhang J Chem Inf Model. 2022 Sep 7. doi: 10.1021/acs.jcim.2c00616. Abstract In recent years, machine learning (ML) models have been found to quickly predict various molecular properties with accuracy comparable to high-level quantum chemistry methods. One such example is the calculation of electrostatic potential (ESP). Different ESP prediction ML models were proposed to generate surface molecular charge distribution. Electrostatic complementarity (EC) can apply ESP data to quantify the complementarity between a ligand and its binding pocket, leading to the potential to increase the efficiency of drug design. However, there is not much research discussing EC score functions and their applicability domain. We propose a new EC score function modified from the one originally develop...
-
Yibo Li, Jianxing Hu, Yanxing Wang, Jielong Zhou, Liangren Zhang, and Zhenming Liu J Chem Inf Model 2020 Jan 27;60(1):77-91. doi: 10.1021/acs.jcim.9b00727. Epub 2019 Dec 20. Abstract The ultimate goal of drug design is to find novel compounds with desirable pharmacological properties. Designing molecules retaining particular scaffolds as their core structures is an efficient way to obtain potential drug candidates. We propose a scaffold-based molecular generative model for drug discovery, which performs molecule generation based on a wide spectrum of scaffold definitions, including Bemis-Murcko scaffolds, cyclic skeletons, and scaffolds with specifications on side-chain properties. The model can generalize the learned chemical rules of adding atoms and bonds to a given scaffold. The generated compounds were evaluated by molecular docking in DRD2 targets, and...
-
Jiangtao Zhang, Yiqiang Shi, Junping Fan, Huiwen Chen, Zhanyi Xia, Bo Huang, Juquan Jiang, Jianke Gong, Zhuo Huang, Daohua Jiang Abstract: Voltage-gated sodium (NaV) channels initiate action potentials. Fast inactivation of NaV channels, mediated by an Ile-Phe-Met motif, is crucial for preventing hyperexcitability and regulating firing frequency. Here we present cryo-electron microscopy structure of NaVEh from the coccolithophore Emiliania huxleyi, which reveals an unexpected molecular gating mechanism for NaV channel fast inactivation independent of the Ile-Phe-Met motif. An N-terminal helix of NaVEh plugs into the open activation gate and blocks it. The binding pose of the helix is stabilized by multiple electrostatic interactions. Deletion of the helix or mutations blocking the electrostatic interactions completely abolish...
-
Abstract: We report for the first time the use of experimental electron density (ED) in the Protein Data Bank for modeling of noncovalent interactions (NCIs) for protein–ligand complexes. Our methodology is based on reduced electron density gradient (RDG) theory describing intermolecular NCIs by ED and its first derivative. We established a database named Experimental NCI Database (ExptNCI; http://ncidatabase.stonewise.cn/#/nci) containing ED saddle points, indicating ∼200,000 NCIs from over 12,000 protein–ligand complexes. We also demonstrated the usage of the database in the case of depicting amide−π interactions in protein–ligand binding systems. In summary, the database provides details on experimentally observed NCIs for protein–ligand complexes and can support future studies including studies o...
-
Abstract: The low-voltage activated T-type calcium channels regulate cellular excitability and oscillatory behavior of resting membrane potential which trigger many physiological events and have been implicated with many diseases. Here, we determine structures of the human T-type CaV3.3 channel, in the absence and presence of antihypertensive drug mibefradil, antispasmodic drug otilonium bromide and antipsychotic drug pimozide. CaV3.3 contains a long bended S6 helix from domain III, with a positive charged region protruding into the cytosol, which is critical for T-type CaV channel activation at low voltage. The drug-bound structures clearly illustrate how these structurally different compounds bind to the same central cavity inside the CaV3.3 channel, but are mediated by significantly distinct interactions between drugs and their surrounding residues. Pho...